Tag Archives: Text classification

The Outcomes and Publication Standards of Research Descriptions in Document Classification: A Systematic Review

Abstract

Document classification, a critical area of research, employs machine and deep learning methods to solve real-world problems. This study attempts to highlight the qualitative and quantitative outcomes of the literature review from a broad range of scopes, including machine and deep learning methods, as well as solutions based on nature, biological, or quantum physics-inspired methods. A rigorous synthesis was conducted using a systematic literature review of 102 papers published between 2003 and 2023. The 20 Newsgroups (bydate version) were used as a reference point of benchmarks to ensure fair comparisons of methods. Qualitative analysis revealed that recent studies utilize Graph Neural Networks (GNNs) combined with models based on the transformer architecture and propose end-to-end solutions. Quantitative analysis demonstrated state-of-the-art results, with accuracy, micro and macro F1-scores of 90.38%, 88.28%, and 89.38%, respectively. However, the reproducibility of many studies may need to be revised for the scientific community. The resulting overview covers a wide range of document classification methods and can contribute to a better understanding of this field. Additionally, the systematic review approach reduces systematic error, making it useful for researchers in the document classification community.

Biologically Plausible Learning of Text Representation with Spiking Neural Networks

Abstract

This study proposes a novel biologically plausible mechanism for generating low-dimensional spike-based text representation. First, we demonstrate how to transform documents into series of spikes (spike trains) which are subsequently used as input in the training process of a spiking neural network (SNN). The network is composed of biologically plausible elements, and trained according to the unsupervised Hebbian learning rule, Spike-Timing-Dependent Plasticity (STDP). After training, the SNN can be used to generate low-dimensional spike-based text representation suitable for text/document classification. Empirical results demonstrate that the generated text representation may be effectively used in text classification leading to an accuracy of 80.19% on the bydate version of the 20 newsgroups data set, which is a leading result amongst approaches that rely on low-dimensional text representations.

Recognising innovative companies by using a diversified stacked generalisation method for website classification

Abstract

In this paper, we propose a classification system which is able to decide whether a company is innovative or not, based only on its public website available on the internet. As innovativeness plays a crucial role in the development of myriad branches of the modern economy, an increasing number of entities are expending effort to be innovative. Thus, a new issue has appeared: how can we recognise them? Not only is grasping the idea of innovativeness challenging for humans, but also impossible for any known machine learning algorithm. Therefore, we propose a new indirect technique: a diversified stacked generalisation method, which is based on a combination of a multi-view approach and a genetic algorithm. The proposed approach achieves better performance than all other classification methods which include: (i) models trained on single datasets; or (ii) a simple voting method on these models. Furthermore, in this study, we check if unaligned feature space improves classification results. The proposed solution has been extensively evaluated on real data collected from companies’ websites. The experimental results verify that the proposed method improves the classification quality of websites which might represent innovative companies.

A recent overview of the state-of-the-art elements of text classification

Abstract

The aim of this study is to provide an overview the state-of-the-art elements of text classification. For this purpose, we first select and investigate the primary and recent studies and objectives in this field. Next, we examine the state-of-the-art elements of text classification. In the following steps, we qualitatively and quantitatively analyse the related works. Herein, we describe six baseline elements of text classification including data collection, data analysis for labelling, feature construction and weighing, feature selection and projection, training of a classification model, and solution evaluation. This study will help readers acquire the necessary information about these elements and their associated techniques. Thus, we believe that this study will assist other researchers and professionals to propose new studies in the field of text classification.

A Diversified Classification Committee for Recognition of Innovative Internet Domains

Abstract

The objective of this paper was to propose a classification method of innovative domains on the Internet. The proposed approach helped to estimate whether companies are innovative or not through analyzing their web pages. A Naïve Bayes classification committee was used as the classification system of the domains. The classifiers in the committee were based concurrently on Bernoulli and Multinomial feature distribution models, which were selected depending on the diversity of input data. Moreover, the information retrieval procedures were applied to find such documents in domains that most likely indicate innovativeness. The proposed methods have been verified experimentally. The results have shown that the diversified classification committee combined with the information retrieval approach in the preprocessing phase boosts the classification quality of domains that may represent innovative companies. This approach may be applied to other classification tasks.